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oPEN Numerical solution of neutral
delay differential equations using
orthogonal neural network

Chavda Divyesh Vinodbhai & Shruti Dubey"’

In this paper, an efficient orthogenal neural network (ONN) approac h iz introduced to solve the higher-
order neutral delay differential equations (NDDEs) with variable coefficients and multiple dalays,

The methad is implemented by replacing the hidden layer of the feed-forward neural netwark with
the orthogonal polynomial-based functional expan sion black, and the carresponding weights of the
network are obtained using an extreme learning machine(ELM) approach. Starting with simple delay
differential equations {DDEs), an interest has been shown in solving NDDEs and system of NODES.
Interest is given to consistency and convergence analysis, and it is seen that the method can produce
a uniform closed-form salution with an error of order 2", where n is the number of neurons, The
developed neural network method s validated over various types of example problems(DDEs, NDDES,
and system of NDDEs) with four different types of special orthogonal polynomials.

Delay differential equation {DDE) plays a crucial role in epidemialogy, population growth, and many math-
ematical modeling problems. In DDEs, the dependent variable depends not only on its current state but ale
on 4 specific past state, One type of DDE in which time delays are included in the state dervative is called the
neutral delay differential equation (NDDE), Delay terms are classified into three types: discrete, cantinunus, and
propaertional delay, In this paper, we are focusing on proportional DDEs and NDDEs, One famous exzmple of
propoertional delay differential equations is the pantograph differential equation which was first introduced i

Generally, the exact solution of delay differential equations is complicated to find, and due 1o the models
complexity, many DDEs do not have an exact solution, Various numerical schemes have been develnped over the
years to find the approximate solution of delay differential equations. There are several articles™ " that illustrate
some exact and numerical methods for approximate solutions of DDEs and NDDEs.

Artificial neural networks{ANNs) have been utilised to produce an approximate solution of differential equa-
Lions for the past 22 years. A neural network approach for several ordinary and partial differential equations
was first proposed by Lagaris et al. in", The approximate solution delivered by the artificial neural networks
has a vartety of advantages: (i) The derived approximation of the solution is in closed analytic form. (1) The
generalization ability of an approximation is excellent. (iii) Discretization of derivatives is not required. Many
articles on approximation artificial newral netwark solutions to different differential equations are available
in the literature""~". As far as we know, the studies for obtaining an approximate solution 1o detay differential
equations using artificial neural networks are limited. There is very little literature available for salvang delay
differential equations using ANNs, |. Fang et al, solved first-order delay differential equations with single delay
using ANN®. In*, Chih-Chun Houe ¢t al. obtained approximate solutions of proportional delay differential
equation using ANN. All these artificial neural network approaches suffer from common problems: (1) All the
algorithms are time-consuming and therefore they are computationally expansive numerical optimization algo
rithms, (2) They completely depend on the trial solution, which is dificult to construct for higher dimensional
problems. Recently in®, Manoj and Shapun obtained an approximate solution of differential equalions using an
optimization-free neural netwark approach in which they trained the network weights u sing ELM algorithm®.
In*, suthors solved the first-order pantagraph equarion using the aptimization-frec ANN approach. Linear first-
order delay differential-algebraic equations have been solved using Legendre neural network in®.

This work presents an orthogonal neural network with an extreme learning machine algarithm(ONN.ELM)
to obtain an approximate salution for higher-order delay differential equations, neutral delay differential equa-
tions, and 3 system with multiple delays and variable coefficients. The ONN model is a particular functional link
neural network{FLNN}"**" case. It has the advantage of fast and very accurate learning. The entire procedure
becomes much quicker than a traditional neural netwaork becanse it remaoves the high-cost iteration procedure
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Preliminaries fuce basic defintions and some properties of the r%rlhngunal polynomia

i fiest, we intraduce i .
E:IL:I:::;?::E we will usr; P.ixito represent the urlhﬂgﬂﬂal Fﬂh'ﬂﬂf“l“i of order

ial. ' . b] that follow
g:téhpjntgil::?l'rﬂm:x:m\ polynomials are special class of polynomials Polx) defined on [a. B]
an orthogenality relation as,
b
f :{I}Pm{x}P,.I:de = Brankne
al
b 2

wheren,m € N, fmals Kronecker delta, glx} is2 weight function and k, = [, 8(x [ Patx) P dx
Remark
1. 1fa weight function g(x) = 1, then the erthogonal polynomial Pa(x}is called Legendre polynomial.
2. [faweight function glx) = (1 —xh" }. then the orthogonal polynomial Prlx)is called Chebyshev polyno-

rmial of first kind.

olynomial.

= then the orthogonal polynomial 7, (x)is called Hermite p

3, Ifa weight function glx) = €
{x) is called Laguerre polynomial.

4. Ifaweight function g(x) = =, then the erthogonal polynomial Py

Properties of orthogenal polynomials.  The following are some of the remarkable properties of a set of orthogo-

nal polynomials:

 Each polynomial Pa(f)is arthogonal 1o any other polynomial of degree < nin a set of orthogonal pelynomials

[Palt), s Palthie el
s Anysetof orthogonal polynomials has a recurrence formula that connects any three consecutive palynomi-

als in the sequence, i.e, the refation Post(t) = (@t + ba)Pa(t) = eaPr-a(t) exists, with constants aq, by, ¢
depending on n. e
e The zeroes of erthagonal polynomials are real numbers.

e There is always a zero of arthogonal polynomial Py (£) between two Teroes of Palt)

Muoore-Penrose ized i i i
Mons se generalized inverse. In this section, the Moore-Penrose generalized inverse is intro-
There can be problems in obtaining the solution ofa -
: : general linear system Ax = y, where A ma be o si
mmﬂ?: n:: ;Eun: r-_:.;::: :m be square. TI:n‘.-II Mmu}- Penrose generalized inverse can be ui:d to solve suth d?ﬂsi:l:{r:f:
inverse is sometimes referred toasa i :
T e et v o il as a synonym of pseudoinverse, More precisely, we define

Definition 2 ™ A matrix B ofordern » misth ized i
e ol mis the Moore- Penrose generalized inverse of matrix A of orderm x n,

ABA = A, BAB =B, (ABY = AB, (BA)T = BA,

Rill'lﬁﬁ: nm
[ IJ‘I‘JIIHE 315‘ I hﬂp!-ﬂdu|ﬁrgnulugm“].sgﬂ.u};:sulz?-g
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where AT denotes the yranspose of matrix A The Moore- Penrase Ec:wm[irrrl inverse of miatrix A 15 denoted
by A"
tion of a general linear system A

s saidd 1o be a minimum AOTI Jeast-squares solu

x=)

Definition 3 % € R

Ffor any y € B
ol < llxll, ¥ € [x A% —yll < A2 ~yh ¥z € RTI

wherell. || is the Euclidean porm.
o 5o has the smallest norm among all the least-squares solutions. i
ares solution of the general linear sysie

tis considered

In ather words, iF3 soluno

1o b 3 eI NGCM feast-squ
equation AX =) Then

st-squarcs selution 10 the linear

@ ettt QTR lea
quired and suffiient.

Theorem 1 * Let B be a matrix walh
d imverse of matrix A, 1 both re

§ = A", the Moare-Fenrose generalize
b equation, higher

resent the general form of the pantofrap
i : m of higher order

Problem definition. In this subsection, we
arder delay differential equation, higher arder neutral delay differential equation, and the syste
delay differential equation with variable coefficients and multiple delays.

The generalized Pantagraph equatiort Pantograph fype equation arises 252 mathematical model in the study of
the wave motion of the averhead supply line toan dectric locomotive. The following equation gives the peneral-
ized form of a pantograph type equation with multiple delays:

A I
(1) = afilztt) + E: hztan) + 3 gttt + g0 ()
fanl =1
with initial conditions
z{fah = Zn. (2
;uhrrné,g]{tr},nirj.huilmdc.:l]isruntinmu: function, 0 < g, < 1 for some k1€ Nandt € [ta, ty]for some,
-] 7
Higher order DDEs and NDDEs.

« Consider the general form of Higher-order DDEs with multiple delay

Ao = (6202 0.2 (gt &
with initinl conditions
tta) = 20,280 = 712 M 0) = 2, (4

whereg)s & (0, 1) fori =1 nand A denote i
| i s the kthr d i
» Consider the general form of Higher-ordes ND[;F.'L Mﬂ?;ﬁ:;i:ﬁli

i =IE!.::U}..._:&_1[r}rth}nl i

Voah of
T 2gh (G0 TG e 2T D G ), (5)
with initial condition
zlfal = "-l].z"{j'a] =T --:i_.{.!q‘,l -
(&)

‘n'l'lﬂ'c a"iﬂI [ H:I.J [ i = 1 = fin R k € Iia"d- dﬂ wotes :Il E
:l 1] Illllk 1!* Irl == fiprfife 14 k”' dtl ivative ﬂf }
i ziE),

Higher order system of DDE. Consi
tion with multiple delays as: ensider the general form of higher erder coupled neutral delay di -
i s

IEI:.!_:I= .z k=1
L0 = itttz z(azf (g0, .21 (g), 0,220} 0)
mih22Pyth. ..,

z;{p'" ] ._'r;{q’}” Er{rj" : = Ay
Hy RS L ] ,tﬂ-.zﬂp’iﬂ,. fpt
i! eS| .z L+l i 1-“’:'!1”"'""1‘% lr’"‘
g ,-.QIPI Plaveraln Fll' L i
= t}l‘ (Ji

& T
alte) = b, 2 : mie1
I o z|¢rﬂ}=ﬂ'|!.___.zf"![ru]__]
=Ii_p
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P LA L) N
A= -au}....:'hn.zilr{”-""“”"” e

b A
;gmssu..i;:t::..:.:rfn,...,zilri',n.zétﬁ”»-'-'='={"1'~'”""':'"' L :
-z:;{::‘:::rm::ftit“*'ln--1*2*’:-:}-:'”‘
il = =ﬂ sitg) = o, z!‘i[lui = Ii-1 l e Ly J
I where oy b Iy € Hmddi'ﬂ,lf{.;-":c‘:. e (0.Dfor] = Lok o+ 10
rI =1
Iﬁ Orthaganal neural network oyl Mm'kmﬂmmm{;wnh an

_layered orthoge
sy this section, we introduce the struciure ufasing}: : ¥ R e
I| extreme learning machine( ELM) algorithm for irainiig

INJ) is a single-lay-
Structure of orthogonal neural network (ONN). Orthagonal m.::l n:lr::;:;:r?;ﬂ?n.wund a hid-
cred feed forward neural netwark, which consisis of one input REWTO £ 0% ;hrgrcturc of an orthogonal neural
| den layer is eliminated by (he orthogonal functional expansion block. The archi
’ K is depicted in Fig. 1. _ S e g
| e rsder 3 1 dimensianal input neuron £ The enhanced pattern s obtained by orthogonal functiontFip)
‘ sien block as follows:
i
|

[Potegt ) Pydapdl.. ... Patagt].
Here Nt a.wh = 5o wilP (1) is the output of the orthogonal neural network. where a3 are randomly selected
fixed weights and ws are the weights to be trai ned

Extreme learning machine (ELM) algorithm. For a given sample points (£, ), f; € R" and 3, € &,
for { = 0,1,...,m asingle-layer feed-forward neural network with (1 + 1) neurons has the following output:

n
i Zw, wlathy J=0,1,....m,
| rab

where g, is the activation function of i-th newron in a hidden layer, a{s are the randomly selected fixed weights
between the input layer and hidden layer, and w)s are the weights between the hidden layer and output, which

néed to be trained
| When the neural network completely approximates the given data, Le., the output af th 1 :
[ actual data are equal, the follawing relation hold: pu e neural network and
|
A
,_ Hidden layer
| I
! B
. Plad)  wy
iy
| Pufagt) Wi
o | : =
_ | Pdadd) Wi
ay
" Fupcti- P
Input loyer & ool l_i Al - ; Output layer
7 link | Pag) wa
o
.{ Exapa-|
nsion |
Bz hlock |
| .
- i P-Jl:ﬂn:ﬂ W
a.' | F.J{i..l“ Wi
| Pula) Wa
.| _updm weights
using ELM alporithm
Fi | PRy
Bure L. The structure of orthagomal el network.
e r e o= e ———— —
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E'Il'hnt.ld,f,!:ﬁ. lp-.:[!,l.._..m. (95
i=

Eqquation (9) can be written in matrix orm as:
Aw=h, ()

where the hidden layer output matrix A is defined as follows:

goloaty) giteta) «o- galdalal
golmat) pilet) == galdafy)

A= . (1)

I:ﬂ.l;lfm: i (agim) +-- Enldalm)

Jﬂd“:{ﬂ'ﬂ,‘wh._.4“'"'7.'5=[}'1,I.j"]-..--|.}'mlru . . r
For the given training pointst's € R"and the weights a5, the matrix A can be calculated and the weights wis
can be calculated by sobving the finear system Aw = b.

Theorem 2 The system Aw = b is solvable in the following several cases:

1. IfAis a square matrix, thenw = A~'b ) N

2 Efrﬁ is djrirtaugufur matrix, then w = A*b, and w is the minimal least square solution of Aw = b. Here A
it 1 prevecdo imverse of A B - _

1. IfAdsasingularmatrix, thenw = A'band A* = AT(A + AAT) ), where 4 is the regularization cofficient.
We can sef o value of L according to the specific instance.,

Errar analysis

This section will discuss the convergence result and error analysis of the ONN-ELM method for solving the delay
and neutral delay differential equations.

Theorem 3 ** Let single layer feed-forward orthogonal neural network N (1,8, w) be an approximate solution of ane-
dimensional neutral delay differential equation, form + 1 arbitrary distinct sample points (1), y;) for j = 0,1,..m,
where b,y € R, then the orthoponal expansion layer output mateix A is invertible, and[Aw — b]| = 0.

Theorem 4 Let = & C™(ty, Im). Zn = Nit.a.w) be the orthogonal neural network with n regrons in the hidden
layer and e, be the absolute error with n fidden neurons, then|le.ll — Oasn — oo,

Proaf The Taylor expansion formula gives us the following expression for z(1) on (15, ek

I"(fu" ) z"(c)

2(t) = z(45) + 2"t We = to) + T o)) + .o+ — =t —tg)" ¢ € (0. 11). 1z
H .
Let us define za(t) = .00 f'—ll.“—-“u = fg)", then we get
1
llz(t) — zale)l] = EHI"HH- il f13)

Let L= span{Pg(t), Py(t).... . Pait)] and ler Z(t) be the best approximation of z(t) in L given as,
Zul6) = 301 wePitaut), where wy's are the weights obtained by ELM algorithm. we get

lzte) — Zu000l < B=(t) — E(01],  ¥Eit) € L.

f14)
In particular, taking 2(t) = 2,(t) we have
Fea (00l = E2it) = Z.(0)0
< [fz(e) = zal0)
L, ) (13)
= E"* {edt — )"
Thus,
fenit)]] = a:—:f-]u— )"
Mo (18]
==
— 1*'

where, M = maxiz"(c}{t — tl? . fort & (g, tml
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b fisr large walue of A. This sherws that C80 4,

feafl)i \on with alment fio efof

storerrver, froen Fe {16) we deduce thal the exacl sut

ate
repreventatianal abilities and it can approEim

urder NDDE using the ti,
ﬂ‘mﬂ?‘lﬁlm the method tn ublain an appromale u.dutmrl :L Th:::;h’:r-mdfr B2 e ipteishinn,
EL;:'TLE";I'ITI m]‘ It can be casily extended 14 the higher arder NIMIE A
rif the higher arder NDDE o
ﬁmg;ﬂ the general form of linear secend-order NDDE

T y
(1)
£) + attiZit) + bityzin + 3 gtz + 3o Py

=1 Ll (17

M
+ Y atat = [, telab)

el 2
condition zia) = z and z(b} = 23, where

with initial condition zta) = 2; and 2'{a) = z; or boundary : 4
2,24, 22,2y & B, althbith,q;(0),di (4} epit). f 12} are continuously differentiable function for ! € {a,b) an

my.my.my M ) ’ .
Using ONN-ELM with n neurona, an spprozimate solution of Eq. (17] is obtained in the form:

Zall) = E“’*'"'”:" (18)

]

where w,’s are the output weights that need to be trained and P, (1) is the i-th orthogona! polynomial.
Sincz the appranimate solution abtained by the ONN-ELM algorithm is the linear combination of the orthag-
onal polynomials, it infinitely differentiable and we have,

"

=% wu, (19)
il

=3 wri, (20)
=i}

. i A
Yt =53 whian. (21)

=] Jml =t

Lt Ll I 3
D Emn =33 twPisn, (22)
k=1 k=] =%

my Ll ] L]
PREATTY -;ZE i int, (23)
I=l k=] r=h

Substituting Eqgs. (18)-(23) into the second arder neutral delay differential equation (17}, we have

- - " -y
wPi - att) Y w i
L HPIO Al 3B+ 603 w0+ Yo w5 g 0P

t=0 =l r=1

" my " "y {2{'
+E""rz#id+l'l}f’:{ﬂl-ﬂ + }:"‘"Z WP (at) = fir).
=4 [ | 150 =1
We can write Eq. (24) as:
z widilt) = fit),
=il {25)
where,
Scentific Reports | .
faeag)ayguky | hrips fider.orgr0.10361341598-023.301 27.5 pt —
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[
Ap S PTIy ol P 4 b 4 L
=1
Ll
N AT
(1]

Using the dise retizationn of interval lablasa =ty =y «,
diseeetized peants, Fag 025 st bie st isfied, that js

E Wil ) =.ﬁltﬂ'j'

il
AT Lﬂp_dun-'".’fﬁm

b=

0= gy = bftrm € N, define [, = f(t.) Al these

Ymoe N, f26)
ol
Equation (24) can be written as a system of equations as;
Apw=py,
where W = [, wy, .., w7,
Aulte) Ajlly) < Aglty)"
Aultid Aglg) <o Aqlty)
I = - - & 1
Aﬁ”m} -"llf;mj . l"n“ﬂl
and by =[f (ty),f (). .. f 11T,
Case] Consider Eq. (17) with the initia] conditions. Then the fallowing linear system is obtained:
Afta) Alig) <o Aty fa
At Ayin) - Aty | fwg fi
] SRR e :
Au.l;fm] Apltg) --- Anltm) J=
Pola)  Pylay - Pyla) Wy Z
Fyta) Pitay ... Pila) == \n
b — 7" —

Case? Cansider Eq (17) with

the boundary conditions. Then the following linear system for NDDE is obtained:

Aolta) Ayltg) oo A1) f
Aafty) Agipy) ... Aalty) Wi i
: ’ i " .
J‘-n”u] A|um.| b AI{-IM} : N f;-:
Fola) Pyia) Pala) Wi B
Falby Pk Putl) f ~—— Iy
S— —— 4 hid e P
A b
To caleulute the weight vector w of the network, we use the extreme learning algorithm, that is;

where A" = (AT 431475
Note Similar methado

of higher nrder neutral delay differential equations.

R i
MEE’MI (2033)13 3xey, |

——

s the least square solution of Eq. (27),
lagy can be used for the higher order ne

'?t'rpi.r.fdm.urgn-n.miﬂ.l'ﬂISE&- 023-30127-5

(27)

utral delay differenia) fquation and the system

T e——— e
natre portfolin
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he exact solution of the given equation is te” L

We employ tour ONNs to obtain the approximate solution of the given second-order DDE with vanable
coellicients We chiouse ten untiormly distributed points in [0, 1]. The relative errors for all ONNs are shown in
Fig. 3, Obtained relative erroes for different orthagonal newral networks are reported in Table 1, and we compare
the approximiate solutions with the exact solution in Fig, 2.

Table 1 and Fig. 3 clearly show that the Chebyshev polynomial-based NN performs best with the maximum
relative errar 561 = 107% Table 2 shows the comparison of the maximum relative ercor for Example 6.1 using
the Legendre, Laguerre, Hermite, and Chebyshev neural networks with various numbers of neurons (n=5, 8,
and 11} and their respective computational time. Additionally, Table 2 shows that all four neural networks sat-
isfy Theorem 4, and for n = 5, all four erthogonal neural networks show similar accuracy. However, Chebyshev
neural network performs better withn = 8,11,

LB} 1 She=0d 2. 26208 I 19e-08 Shie—0R
az . 2008 5. H%e-08 R ] 4 Sde-08 1
a3l [ 457e-04 4 19e=0H 48~ 412c-08
04 | 107e-08 G.70e-09 1.40:-08 ZiHe-08
s | Sde-04 | ESp=-018 T.1e-08 4.5%e-08
o6 S e Sade-0d 5.5e—0R 1 06=-D8
0z i fde-08 o Efie-1& 71 7e-08 E73e-08 —|
a4 5.0%c=04 5 14e=08 5.4le-08 13208
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Table 1. The relative error for Example 6.1 with different orthogonal neural networks.
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Scientific Reports| {2023} 133164 | hittps:/fdoLorgf10.1038/541538-023-30127-8 riature portfolic

&3 Scanned with OKEN Scanner



1
as d
e |
Ty
4

i "
; i II' ! Wi L k' Jr L] i
= 11N

il “._ ‘ -
3 3 '._r_‘__:_._..-r" of 1 {f:} n= I I

™
-
_§
.
i
1
i
i @l TR o bR TR OEUR P By R
- -
.:-'_-
e Ty
-
v
3
"\-
-
"

|

LT
|

{b]' n= rent numbers of neurons for Foamy

neurons

Table 2. Comparision of
Significant values are in bold.

i ' iple delay:
: Consider the second-order neutral delay Jdifferential equation with multiple delays

Example 6.2 ;
1 ! 4 o (),
;n-”]-_—;sz}‘{-f(i)-l-zi(z) + 0.52 (3) +f

#i0p =0, 210) =0,

where f(t) ==t} =1+ Lre (0.1}

i | tion is 2(t) = I
The exact solution of the given equation is zit) formly distributed training points and i

Thi tian is solved using Four ONNs architecture with ten un wi
64, anlfl ;qnu:ufms in the hiddfn layer, Relative errors far the different ONNs with 6.8, and 9 neurans as achiva:

3. Figure 1 shows an ermr graph of different orthogonal neural networks.

tion functions are reported in Table 3
and a comparison of approximate selutions with the exact solution 1s shown in Fig. 5.
the given second-order neutral delay d ifferential equation,

Erom Table 4 and Fig, 4 we conclude that for
Chebyshey polynomial based ONN performs best with the maximum relative error 7.19 = 10~ . Additionally,
Table 3 shows that all four neural netwaorks satisly Theorem 1.

Example .3 * Consider the second-order neutral delay differential equation with variable coefficients
:"{::a-’(f)—l-"f' 5 i
Bt TSR 1) » PEIGL)
z(0) =1, 2"(0) = 0.

The exact solution of the given equation s 2(t) = ¥ + 1.
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: iformly distributed
To obtain the approximate solution of the given equation, we use four ﬂﬁnilﬂﬁdﬁi: ;Ia}'tr. R:rlntiw ETTOrS
training points in [0,1] and with 8,9, and 11 newrons as activation functions 'l.:la]:le ¢ e et SopRa e
fior the different ONNs and with different numbers of neurons are reported in £ foaar special ONNs.
solutions are compared in Fig, 7. Figures 6, 7 shows the absolute relative error & 'S0 FEe © oy oo
From Table 5 and Fig, 6, we conclude that for the given “E“"‘d‘“rd_“ neutr h Ry o relative “mr'
Chebyshev polynomial-based ONN provides the best accurate solution with the maximu

2.29 x 107 "%, Additionally, Table 6 shows that all four neural networks satisfy Theorem 4.
Example 6.4 "' Consider the thied-order pantograph equation
t
2 = "2n = 2 _:(%) + teos(2¢) + n:r.r(i). te(0 1)

20} = 1, 2(0) = 0, 2(0) = —1.
The exact solution of the given equation is z(t) = cos(t).
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Figure 7. Comparison of the exact selution with the obtained approximate solutions of Example 6 3,
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Table 5. The relative error for Example-6.3 with different orthogonal neural networks.
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Table 6. Comparision of maximum relative error for Example 6.3 with different numbers of neurans,
Significant values are in bold.

To abtain the approximate solution of the given equation, we use four ONNs with ten uniformly distributed
training points in [0,1] and with 811,13 neurons as activation functions in the hidden la;.-e_r. Relative errors for
the different ONNs with different numbers of neurons as activation functions are reported in Table 7. The exact
and approximate solutions are compared in Fig. 8. Figure 9 shows the maximum relative error of four special

ONNs with ditferent numbers of neurons, -
From Table & and Fig. 9, we conclude that for the given third-order neutral delay differential equation, Cheby-

shev polynomial-based ONN provides the best accurate solution with the maximum relative errer 3.77 x 10717,
Additionally, Table 7 shows that all four orthogonal neural networks satisfy Theorem 4

Comparative analysis
This section describes a comparative study of the proposed approach to the 1st-order pantograph equation and

system of pantograph equations with other neural network approaches.

Example 7.1 ** Consider the pantograph equation with variable coefficients and multiple delays

f 3 [t
20 =05z 4 05"z = izl - 3
() sz(f) 4 0.5¢ z(z)+sl (3)+3m

0y =0,

where, g(t) = e~ (12sinlt) + aesin( L) — Beostt) + 3te ¥ sin( L)),

The exact solution of the given equation s 200) = sin(r)e™",

L] 0007 Llle=05 | D004 Llle-05 | @003 Fdle-05 | oo L1le-05
In ooy Y B&e—0R | D4 hibe-IE | DM G Doe-08 | D(HM 3.Bbe- 08
1+ [onme Lide-0% | DD8% Ylle-0% (G017 | d0e-08 | 0022 1 7e-10

Table 7. Comparision of maximum relative error for Example 6.4 with different numbers of neurons
Significant values are in bald, )
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Figure 9. Error graph for different orthogonal neural networks with different numbers of neurons for Example
6.

We employ four ONNs to oblain the approximate solution of a given pantagraph equation with multiple
delays. We choose eight uniformly distributed points in [0, 1] with 5,8 and |1 neurons in the hidden layer. The
relative errors with all four ONNs with different numbers of neurons are shown in Fig. 11. Obtained relative
errors for the different orthogonad neural networks are reported in Table 9, and we compare the approximate
solutions with the exact solution in Fig, 10.

Table W and Fig. 11 clearly show that the Chebyshev palynomial-based ONN performs best with the maximum
relative error 3.40 = 1071

The maximum relative error of a simple feed-forward neural networkiFNN) method in® is4.05 = 10~ % and

the maximum relative error of the proposed FLNN-based ONN method is 3.40 % 10", This comparisen shows

that the ONN method can obtain a better accuracy solution than simple FNN. Additionally, Table 9 shows that
all four arthogonal neural networks satisfy Theorem 4.

Example 7.2 ** Consider the system of pantograph cquation
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Figure 11. Error graph for different orthogonal neural netwo
Example 7.1,
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[ 056 4
ity =5it) =i+ (E) ~eM e,

! 2
5t = —z{t) = =(t) _3?(5) b st gt

o) =1, o =1
The exact solutions of the given system of pantograph equation is 2 (t) = ¢’ and 2:(t) = e,

To abtain the approximate solutions of the given system of DDEs, we use four ONNs with twelve uniformly
distributed training paints in [0,1] and with 5,7, and 10 neurons in an orthogonal functional expansion block as
activation functions. Relative errars for the different OMNs with 5,7, and 10 neurons as activation functions are
reported in Tables 10 and 11. Comparison between the exact solution and approximate solutions are presented
in Figs. 14 and 15. Figures 12, 13, 14 and 15 show the absolute relative error between four special ONNs and
exact solutions.

From Tables 111 and 11, we conclude that for the given system of deley differential equation, Chebyshev
polynomial-based ONN provides the best accurate solution for 2y (t)and 2;{t) with the maximum relative errors
L0 5 10~ %and 501 = 10711, respeclively,

"The maximum relatve error of a simple feed-forward neural network(FNN) method in®® for 2 (¢) and 2:00)
with twelve traming points are 193 » 10 % and 242 = 107° respectively and the maximum relative error of
the proposed FLNM-based ONN methed for 2;(¢) and 230} with twelve training points are 160 = 1077 and
511 % 107" respectively. This comparison shows that the ONN method can ohtain a better accuracy solution
than simple FNN. Additionally, Tables 10 and 11 show that all four orthogonal newral networks satisfy Theorem 4,

Example 7.3 * Consider the system of pantogeaph equation
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Table 10. Comparision of maximum relative error of 2yt ) for Example 7.2 with different numbers of neurons
Significant values are in bold. '
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2yit) = 3zy03

= (b + 0T + faif,
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i = i =i -
- 2050+
() = (080 + 32D
— 5 {0.20) + K080 + i)
2000 = 0. 7710 = Lkl = L,

(1) — 250

where, fi (1) = cos(0.3¢) — sin(0.26) = sin(t) + 8% = &%,

felry = —cos(QI0) + casiL 50} = 3sin(0 50 + cos(d) — L

filty = —cas(0.80) 4 sin(0.20) — Ieos(r) = Isinit) + M — 2L

The exact solutions of the given system uf pantograph equation are

ity = ¢

j To obtain the approximate solution of the given system of DDEs, we use four ONNs with ten uniformly
distributed training points in [0,1] and with 7.10. and 13 newrons in an orthogonal functional expansion block
as activation [unctions. Relattve errors for the ditferent ONNs with 7,10, and 13 peurons 48 aclivation furetines
are reported in Tables 12, 13, and 14. Comparnison between the exact solution and approsimate solutiens are
presented in Figs. 15, 17, 18, and 19. Figures 16, 20, and 21 show the abselute relative error between four special
OMNg and exoct solutions.

From Tables 12, 13 and 14, we conclude that for the given system of delay difterential equation, Chebyshey
palynamial - based ONN provides the hest accurate solutions of 2y (2200 and 24 (1) with the maximum relative
errors1.98 x 10719311 x 10" and 5.74 x 107" respectively.

The maximum relative errar of o simple feed-forward neural nelwork{ FAMN) method ™ Tor 2y (0, S2000
and z5(t) with ten training points are 878 = 105,142 = 10~ *and 1.93 x 1077 respectively and the mazimunm
relative error of the proposed FLNM-based ONN method for zp06), =300 and 2yt with ten training points are

syt = simith, sa{t) = costth, and
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Figure 14. Error graph of 2 (1) for different orthogonal neural nétwaorks with different numbers of neurons for
Example 7.2,

198 x 107,311 » 10" and 5.74 = 10~ respectively. This comparison shows that the ONN method can obiain
a better accuracy solution than simple FNN, Additionally, Tables 12, 13 and 14 show that all four orthogonal
neural networks satisfy Theorem 4.

Conclusion

In this paper, we obtained approximate solutions of higher order NDDES, as well as a systemn of DDEs with
multiple delays and variable coefficients, using four single-layer arthogonal poalynomial-based neural networks:
(i) Legendre neural network, (i) Chebyshev neural network, (iii} Hermite neural network, and {iv) Laguerre
neural network. For training the network weights, the ELM algarithm is used, It is proved that the relative error
between the exact solution and approximate solutions obtained by ONNs is of order 277, where 1 is the number
ef neurons. Further, it is shown that cach orthogonal polynomial-based neural networks provide an approximate

solution, that are in good agreement with the exact solution. However, it is ohserved that, among these four
QNN the Chebyshev neural network provides the most accurate result,
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